国内统一连续出版物号:CN 11-1384/F

国际标准连续出版物号:ISSN 1000-7636

当前位置: 首页  >>   最新刊发  >>   最新刊发
最新刊发

人工智能企业商业模式创新的差异化路径研究——引致颠覆型还是完善型?

人工智能企业商业模式创新的差异化路径研究——引致颠覆型还是完善型?

李永发1 陈舒阳2 王东3

(1. 安徽财经大学工商管理学院;2. 东南大学经济管理学院;3. 安徽科技学院管理学院)

  内容提要:识别人工智能商业化逻辑与机制对经济结构转型升级具有重要意义。不同企业的内外部要素条件存在差异,其商业模式创新目标与路径应有所区别。本文基于35家人工智能上市公司数据,采用必要条件分析(NCA)和模糊集定性比较分析(fsQCA)方法探索性研究引致高水平或低水平颠覆型商业模式创新、高水平或低水平完善型商业模式创新的多元前因组合。研究结果显示:(1)高水平颠覆型商业模式创新路径包括内因主导、外因引导和联合驱动三种类型,高水平完善型商业模式创新存在内因主导和联合驱动两种类型;(2)良好的制度环境是高水平商业模式创新不可或缺的条件;(3)技术创新不足更可能引致高水平颠覆型商业模式创新,高技术创新在完善型商业模式创新中扮演关键角色;(4)驱动因素的匹配关系和差异化模式选择是决定商业模式创新结果的关键,因素间存在替代关系。研究结果对于中国人工智能企业商业模式创新路径选择以及数字经济高质量发展策略具有一定的启示意义。

  

  关键词:商业模式创新;颠覆型;完善型;定性比较分析;人工智能

  

  作者简介:李永发,安徽财经大学工商管理学院教授,蚌埠,233000;陈舒阳,东南大学经济管理学院博士研究生,南京,210096;王东,安徽科技学院管理学院助教,蚌埠,233030。

  

  基金项目:2021年安徽省社会科学规划项目(孵化项目)“中国产业政策驱动微笑曲线底部企业商业模式重塑的机制与路径研究”(AHSKF2021D08

  

  引用格式:李永发,陈舒阳,王东.人工智能企业商业模式创新的差异化路径研究——引致颠覆型还是完善型?[J].经济与管理研究,2023,44(5):3-20.DOI:10.13502/j.cnki.issn1000-7636.2023.05.001.

  

  

Research on Differentiated Path of Business Model Innovation of Artificial Intelligence Enterprise

LI Yongfa1, CHEN Shuyang2, WANG Dong3

(1. Anhui University of Finance and Economics, Bengbu 233000;

2. Southeast University, Nanjing 210096;

3. Anhui Science and Technology University, Bengbu 233030)

  

  Abstract: Identifying the commercialization logic and mechanism of artificial intelligence concerns the transformation and upgrading of China's economic structure. Due to internal and external factors and conditions, enterprises' business model innovation goals and paths should be different. Based on the data of 35 listed artificial intelligence companies, this paper uses the mixed method of necessary condition analysis (NCA) and fuzzy-set qualitative comparative analysis (fsQCA) to explore multiple antecedent combinations of disruptive and perfect business model innovation.

  The necessary condition analysis shows that all five defined antecedents are optional for disruptive business model innovation. However, the institutional environment has a high effect but fails to pass the significance test, indicating the unnecessity of disruptive business model innovation. Further analysis reveals that the institutional environment first reached the bottleneck when the disruptive business model innovation level reached 40%. After calculating combinations of antecedents that lead to different levels of business model innovation, the results are as follows. (1) There are three types of high-level disruptive business model innovation, including endogenous-led, exogenous-directed, and joint-driven. Moreover, endogenous-led and joint-driven are two types of high-level perfect business model innovation. (2) Excellent institutional environment is indispensable for high-level business model innovation. (3) Lack of technological innovation is more likely to lead to high-level disruptive business model innovation, and high-tech innovation plays a key role in perfect business model innovation. (4) The matching relationship of driving factors and the choice of differentiated models are determinants of business model innovation, and there is a substitution relationship among the factors.

  The findings enrich the antecedents and types of business model innovation, and provide a configuration theory perspective for choosing disruptive or perfect business model innovation. Although this paper focuses on the artificial intelligence industry, the research process and findings have certain enlightenment for the choice of business model innovation paths for enterprises in other fields and for high-quality development strategies in the digital economy.


  Keywords: business model innovation; disruptive; perfect; qualitative comparative analysis; artificial intelligence